
RIThink, 2022, Vol. 11 20

Original Scientific Paper
Received: 2022-03-07
Accepted: 2022-04-10

MICROSERVICE ARCHITECTURE FOR SCALABLE IoT PLATFORMS

Daniela Kunej, RIT Croatia, dnk4284@g.rit.edu

Abstract

Internet of Things (IoT) is the next step of the technological evolution in a world of constant
technology enhancements. The concept of IoT describes the shift of communication over the
Internet, from human to machine, to machine to machine(M2M). These machines together form a
large network of sensors sending vast amounts of data. Just like any new technology, the evolution
of the Internet of Things requires adaptations and adjustments as time shows the issues the
technology encounters. In this paper, different architectures of IoT platforms are presented and
analyzed, and finally, a custom solution for an architecture of an IoT platform is suggested using
microservices to solve scalability issues that often arise in fast-growing environments like that of
the IoT.

Introduction
The last few decades have caused a constant enhancement of technology, bringing in revolutionary
ideas and life-altering applications of the technology available. The Internet of Things(IoT) is the
next step of the technological evolution. IoT is the concept of connecting a vast variety of things to
the Internet, ranging from smartphones and televisions to simple house appliances like air
conditioners and coffee machines. For example, the global company Samsung presents smart
devices including smartphones, smart TVs, smart watches, air conditioners, and many more
creating their own concept of “Smart Things” as described on their website:
https://www.samsung.com/us/smartthings/.

The concept of IoT describes the shift of communication over the Internet, from human to machine,
to machine to machine(M2M). These machines together form a large network of sensors sending
vast amounts of data. Latest-generation sensors are producing an almost continual stream of high-
dimensional data creating new challenges (Buyya et al., 2016).

Just like any new technology, the evolution of the Internet of Things requires adaptations and
adjustments as time shows the issues the technology encounters. There is no unified architecture
that is agreed upon to be the best for such platforms and varies greatly depending on the
requirements and possibilities of those building it. However, one main takeaway everyone can
agree upon is that it is extremely challenging to develop a system architecture that is able to follow
the growth of the IoT domain, and what becomes more and more evident, is that the amount of data
keeps increasing exponentially, making scalability one of the most important features of the
platform being built.

https://www.samsung.com/us/smartthings/

RIThink, 2022, Vol. 11 21

All IoT architectures encounter different challenges, including:

- Security challenges
- Connectivity challenges
- Compatibility challenges
- Scalability challenges

As IoT becomes a ubiquitous part of our everyday surroundings, handling multiple aspects of our
lives and holding an increasing amount of our data in constant observation, the importance of the
architecture becomes more evident, and sparks numerous proposals of solutions to these
challenges.

To develop an architecture that presents a good solution for this type of platform, different
architectures of IoT platforms are presented and analyzed, and finally, a proposal of a solution for
the architecture of an IoT platform is suggested using microservices in an attempt to solve issues
which often arise in fast-growing environments like that of the IoT.

This work consists of:

- A brief description of the Internet of Things and explanation of its importance
- Analysis of existing IoT platforms and their advantages and drawbacks
- A custom proposal of an IoT platform with detailed explanations and elaborations of design

and technology choices

Brief Description of the Internet of Things

Definition
“The Internet of things, or IoT, is a system of interrelated computing devices, mechanical and
digital machines, objects, animals or people that are provided with unique identifiers (UIDs) and
the ability to transfer data over a network without requiring human-to-human or human-to-
computer interaction” (Gillis, 2021).

Or even more simply put by the IT department of Shrimati Kashibai Navale College of Engineering
in their paper published in IARJSET(International Advanced Research Journal in Science,
Engineering and Technology) “Introduction to IoT”:

“The phrase Internet of Things (IoT) refers to connecting various physical devices and objects
throughout the world via the Internet” (Gokhale, Bhat, 2018).

From these definitions, we can see that the key concept of IoT is the connectivity of any sort of
device to the Internet as well as their ability to constantly send data and/or measurements over a
network. The part that the Internet plays in our lives has therefore shifted towards integrating
machine-to-machine communication to provide a virtual environment that seamlessly
incorporates into our lives.

The term “Internet of Things” was coined in 1999. by Kevin Ashton who used it in a supply-chain
management presentation to highlight the importance of the “things”, we interact with every day

RIThink, 2022, Vol. 11 22

as technology advances. Needless to say, since then, this statement has become immensely more
accurate, with its accuracy still increasing every day.

Historically, Radio-Frequency Identification or RFID was the dominant technology in IoT, more
recently replaced with Wireless networks (WSN) and Bluetooth-enabled devices which are
previously researched and analyzed extensively. However, the unique requirements of IoT, such as
scalability, heterogeneity support, integration, and data stream processing are given less
attention and are still very open for research and advancement suggestions.

How it works
An IoT environment is built up by multiple smart devices, with access to the internet, in embedded
systems that are used to collect, send, and perform actions on the data that they collect from their
surroundings. These devices collect the data that they are configured to collect, and by connecting
to an IoT gateway send the data to an endpoint at which the data is analyzed, aggregated, or
manipulated for further software solutions depending on the requirements of the clients.

Importance
The obvious importance of the Internet of Things is that of our everyday lives – it helps people live
and work smarter, giving them complete control over multiple aspects of their lives previously
unimaginable. They analyze and manipulate their home’s security, temperature, air humidity, and
many other factors simply using their smartphones whenever they need, and wherever they are, as
long as they are connected to the Internet, which, we can all agree, has already become a must-
have at all times. Recently, these types of sensors were extensively researched and described by
John R. Delaney and Alex Colon in their article “The Best Smart Home Security Systems for 2022”,
where they state that users can: “remotely control your door locks, lights, thermostats, vacuums,
lawn mowers, and even pet feeders, using your smartphone and an app.” (Delaney, Colon, 2022).

However, today, business is what makes the world turn, and IoT has also become essential to
business. Therefore, many companies, and especially corporations, include IoT in their way of
working, as the profitability of IoT for their business becomes undeniable. IoT can be used to
monitor their overall business processes, improve the customer experience, save time and money,
enhance employee productivity, integrate, and adapt business models, make better business
decisions, and generate more revenue. As more and more businesses realize the potential of IoT in
their work, IoT will continue to gain momentum. The importance of IoT in business is more
extensively described in the article “How Business Processes Are Evolving With The IoT” where it is
stated that: “All business processes need to be future-proof and adaptable when dealing with
technological advances. Many businesses are already using the Internet of Things (IoT). As the
technology becomes more and more integrated into our lives, business processes have to continue
to adapt as well as the way these are managed” (Meghamala, 2019).

RIThink, 2022, Vol. 11 23

Challenges

Security challenges
Due to extreme resource restrictions, security is often back-seated for functionality to save battery
life and keep processing power necessities to a minimum. Although there is a lack of privacy
standards and end-to-end security solutions – “Key Management System (KMS) with a zero-trust
network feature and blockchain is rapidly addressing the privacy and trust threats with reinforced
security features” (Imran et al., 2020).

Connectivity challenges
Connectivity is an extremely important aspect of IoT as the devices provide data that is valuable if
received correctly and continuously- especially in sensors that are meant to monitor process data
and supply information. Connectivity needs to be available to all devices at a low cost, and most
importantly, needs to be extremely reliable. Otherwise, the data provided to the gateway can be
incomplete, invalid, and if not handled properly, can defeat the purpose of IoT completely. Due to
the complexity of wireless connectivity, the information from sensors cannot be transferred
seamlessly from the cloud, devices, infrastructure and applications, making this one of the biggest
challenges of IoT (Ankit, 2021).

Compatibility challenges
Considering that no international standard of compatibility has yet been defined for the field of IoT,
devices from different manufacturers are often incompatible and unable to communicate with each
other. “IoT is growing in many different directions, with many different technologies competing to
become the standard. This will cause difficulties and require the deployment of extra hardware and
software when connecting devices” (Banafa, 2017).

Scalability challenges
“The Internet of Things must be scalable in order to accumulate the billions of connected devices
that will exist in the next five years” (Lester, 2022). Even with today’s technological enhancements,
without proper architectural planning of the IoT platform, it will be unable to handle the vast
amounts of devices and continuous data stream. Considering the importance of the stability and
robustness of the systems, the architecture needs to be scalable to flexibly adapt to any increase in
connecting devices and the amount of information it is fed with.

Existing IoT platforms
Google Cloud IoT

One of the world’s leading Internet of Things platforms at the moment. The platform connects to
hardware from Intel and Microchip automatically and is compatible with several operating systems.

RIThink, 2022, Vol. 11 24

Google Cloud IoT’s main features include: AI and machine learning capabilities, data analysis in real-
time, data visualization, location tracking.

Core use cases: predictive maintenance, real-time asset tracking, logistics, and supply chains, smart
cities, and buildings. Google Cloud IoT is a system with numerous services integrated as one
solution.

These services include:
- Cloud IoT Core which is used to collect and manage device data. MQTT and HTTP protocol

bridges are utilized for connectivity and communication with the Google Cloud Platform
- Cloud Pub/Sub handles data ingestion and message routing for additional data processing
- Google BigQuery allows for secure real-time data analytics
- AI Platform makes use of machine learning capabilities
- Google Data Studio visualizes data through the creation of reports and dashboards
- The Google Maps Platform aids in visualizing the location of linked items (Janson, 2021).

Cisco IoT Cloud Connect

Cisco IoT Cloud Connect is designed with mobile operators in mind and is the best IoT cloud
platform for industrial and individual use cases. Cisco also gives reliable IoT hardware, including
switches, access points, routers, gateways, and other devices.
Core features of Cisco IoT Cloud Connect: Powerful industrial solutions, high-level security, edge
computing, centralized connectivity, and data management
Core use cases: Connected cars, fleet management, home security and automation, payment
solutions, industrial networking, healthcare (Janson, 2021).

Cisco IoT Cloud Connect

Cisco IoT Cloud Connect is designed with mobile operators in mind and is the best IoT cloud
platform for industrial and individual use cases. Cisco also gives reliable IoT hardware, including
switches, access points, routers, gateways, and other devices.
Core features of Cisco IoT Cloud Connect: Powerful industrial solutions, high-level security, edge
computing, centralized connectivity, and data management
Core use cases: Connected cars, fleet management, home security and automation, payment
solutions, industrial networking, healthcare (Janson, 2021).

Salesforce IoT Cloud

Salesforce’s focus is on customer relationship management and has used IoT solutions to enhance
this market segment. The Salesforce IoT Cloud platform provides a personalized experience and
companies can understand customer data more accurately, improve the UX/CX, and increase
revenue.
Salesforce IoT Cloud core functions:
Complete customer, product, and CRM integration
Rules, condition, and event management through simple UI

RIThink, 2022, Vol. 11 25

Proactively resolve customers’ problems and needs.
Core use cases: Government administration, chemicals, machinery, financial services, marketing,
and advertising (Janson, 2021).

Custom architecture proposal for scalable IoT platform
For reasons explained in the previous chapters, proper planning, and development of the
architecture of the IoT platform is extremely important. Only if this is done properly, can an IoT
platform serve its purpose to its full extent and potential.
This chapter therefore focuses on presenting a custom solution of a microservice architecture for
scalable IoT platforms.

Architecture: Monolith vs Microservice

Monolith Architecture
The Monolith architecture (shown in Figure 1) for software applications is the more traditional way
of designing software systems where the application is built as a single indivisible unit.
The standard components of such an architecture system are the user interface which is served to
the end-user presenting ways of communicating with the system, the business layer which contains
the business logic of the application, and the data interface which communicates with the
database at the lowest level.

All these components are situated within one code base, and when a change is needed, it must be
implemented on the entire stack. Because of this, applications built in monolithic architecture lack
modularity.

 Figure 1: Monolithic Architecture (Gnatyk, 2018)

RIThink, 2022, Vol. 11 26

Pros of Monolithic Architecture

- Simple to handle logging, handling, caching, and performance monitoring because the
functionalities concern only one application

- Simple to debug and test: The end-to-end case is covered by one application
- Simple to develop and deploy

Cons of Monolithic Architecture

- Hard to understand: When the application begins to scale up in size, the code becomes
hard to understand and manage

- Hard to make changes: Code changes affect the entire stack, making changes dangerous
and hard to orchestrate due to tight coupling

- Hard to scale up: Specific components cannot be scaled up separately
- Hard to introduce new technologies: If a new technology needs to be introduced, the

entire application must be rewritten, instead of just specific code of the component

Microservice Architecture
The Microservice architecture (shown in Figure 2) is a more recent approach to designing software
systems. In contrast to a monolithic architecture, microservice architecture divides the single
unified unit that is a monolith, into independent units that are each concerned with a single
application process. Each service can be managed, changed, deployed, and scaled independently
from the rest of the processes of the application (Gnatyk, 2018).

 Figure 2: Microservice Architecture(Gnatyk, 2018)

Pros of Microservice Architecture

- Easy to scale up: This is considered the biggest benefit of the microservice architecture.
Each component can be scaled and is virtually infinite as to how large it can be scaled up to,
so fast-growing applications can handle any increase in users or transactions, while a
monolithic architecture would be constrained by such growth.

RIThink, 2022, Vol. 11 27

- Components are independent: New features are easily added. Each component can be
changed and deployed separately, and mistakes only impact one specific process so it is
lower risk.

- Easy to understand: Smaller components allow easier overview and management - rather
than having to analyze the entire application, only the part of interest can be analyzed.

- Flexibility: Each component can be developed in any technology, so developers are free to
implement new technologies keeping the application more competitive.

Cons of Microservice Architecture

- Complexity: Each component and its connections must be handled separately including
the deployment process.

- Cross-cutting concerns: Any process that affects others parts of the system is harder to
maintain; like logging, metrics, auditing, externalized configurations, etc.

- Testing: End-to-end tests are much harder to develop in a microservice architecture than
in a monolithic architecture.

Custom Microservice Architecture Solution Overview

As technology develops, the monolithic architecture has become less and less popular for large-
scale applications. Microservices have taken the lead as applications become fast-paced and fast-
growing making agility, scalability, and flexibility more important than ever. This chapter presents
a custom solution of microservice architecture for an IoT platform, combining two very important
sections of the new era of technology, microservices and IoT. To demonstrate the flexibility and
simplicity of integration with the microservice architecture, multiple programming languages are
used: Typescript - Node.js and Java - Spring Framework. The proposed architecture is as shown in
Figure 3:

RIThink, 2022, Vol. 11 28

 Figure 3: Custom IoT Platform Architecture

RIThink, 2022, Vol. 11 29

Sensors
The first components that can be seen in the system are the sensors that send continuous streams
of data to the MQTT broker. They are the initial data sources that send their new data values to the
MQTT Broker in specified periods using the MQTT protocol further explained in the following
chapter.

MQTT Protocol
As per the official mqtt.org website, the MQTT (Message Queuing Telemetry Transport) protocol is
defined as:

“A standard messaging protocol for the Internet of Things (IoT). It is designed as an extremely
lightweight publish/subscribe messaging transport that is ideal for connecting remote devices with
a small code footprint and minimal network bandwidth” (n.d., 2022).

MQTT is the most widely used protocol within IoT projects. It is designed as a simple protocol that
relies on the Publish/Subscribe features to share data between the clients and servers as shown in
Figure 4 (Kalyan, n.d.).

 Figure 4: MQTT protocol (Kalyan, n.d.)

There are many reasons why the MQTT protocol is the most competitive solution for IoT and M2M:

- Lightweight Code Integration: A few lines of code are enough to integrate with the
protocol in almost any programming language.

- Data Packets Compression: Extremely resource-efficient in devices with low battery or
CPU power. In terms of data amount sent is even more significant for MQTT case, which is
larger than for HTTP. But we can compress the size for MQTT with optional additional layer
of compression (Ghosh, 2019).

- Speed: Real-time, no delays. MQTT Protocol is used to forward the message towards the
MQTT broker because according to measurements in 3G networks, throughput of MQTT is
93 times faster than HTTP’s (Serozhenko, 2017).

- Stability: If a client is unexpectedly disconnected, subscribers can be informed with
instructions to fix the issue. The MQTT IoT protocol can transfer data even with unstable
connections. It provides three options for Quality of Service (QoS) which is responsible for
the message delivery (Petrova, Solovev, 2020).

RIThink, 2022, Vol. 11 30

- Retained Messages: Each topic can have a retained message that will automatically be sent
to each new client subscribing to the topic. Each client that subscribes to a topic pattern
that matches the topic of the retained message receives the retained message immediately
after they subscribe. The retained message eliminates the wait for the publishing clients to
send the next update (HiveMQ team, 2018).

MQTT protocol is described through its 5 main components:

Broker – server which manages messages between clients
Topic – the destination which the data reached on the broker
Message – the message dispatched to the topic
Publish – the process of sending the message to the broker
Subscribe – the process of subscribing to a client’s data

“The MQTT protocol is the standard for all major cloud platforms, including Microsoft Azure, IBM
Cloud, and Amazon Web Services. Facebook even uses MQTT for its Facebook Messenger and
Instagram apps. For industrial applications, MQTT is especially well-suited for remote monitoring,
and its lightweight properties make MQTT one of the most widely used protocols for IoT and IIoT
applications” (Collins, 2020).

For these reasons, in the proposed architecture, MQTT is used as the main communication protocol
for communicating with external devices.

IoT-Simulator
The IoT-Simulator is a custom-made solution created in order to produce a continuous stream of
data. The simulator acts as a group of real life sensors would, sending updated values towards the
IoT platform periodically. This way, a real life IoT platform can be simulated as a continual data
stream is produced.
This component is developed as a Node application, using Typescript.
To demonstrate the platform solution, five different sensors have been implemented:
1. Temperature sensor – numeric value
2. Barometer – numeric value
3. Humidity sensor – numeric value
4. Motion sensor – boolean value
5. Accelerometer – numeric value

Four instances of each sensor are created, creating a total of 20 clients connecting to the MQTT
broker and publishing data to a topic defined for each sensor “{clientId}/data” in specified
intervals.

Implementation example:

export class TemperatureSensor implements Sensor {

 //declare variables to hold client id value and mqttConnector object
 private readonly clientId: string

RIThink, 2022, Vol. 11 31

 private readonly mqttConnector: MqttConnector

 //constructor used to instantiate above mentioned variables and connect
 clients to MQTT broker
 constructor() {
 this.clientId = `temperature-${v4()}`
 this.mqttConnector = new MqttConnector(this.clientId)

 this.mqttConnector.client().on('connect', () => {
 return this.publish()
 })
 }

 //publish method to send random numeric value to MQTT broker each 500
 milliseconds.
 public publish<NumericSensorData>(): void {
 setInterval(() => {
 this.mqttConnector.publish(
 SensorData.create({
 id: this.clientId,
 type: SensorType.NUMERIC,
 timestamp: new Date().getTime(),
 value: Math.floor(Math.random() * 100),
 })
)
 }, 500)
 }
}

Protocol Buffers are used to define the format of the message because Protobuf performs better
than JSON. Also, MQTT Protocol is used to forward the message towards the MQTT broker because
according to measurements in 3G networks, throughput of MQTT is 93 times faster than HTTP’s
(Serozhenko, 2017).

Protocol Buffers – Protobuf
Protocol buffers were developed by Google to provide a language-neutral, platform-neutral
mechanism for serializing data. Similar mechanisms that are more widely known, are XML and
JSON. However, Protobuf is smaller, faster, and simpler in comparison. By defining the structure of
the data once in a proto schema, special generated source code can be easily integrated for reading
and writing the structured data from any data stream and in any programming language.

Protocol Buffers are used to define the format of the message because Protobuf performs up to 6
times faster than JSON (Krebs, 2017).

In this solution, the sensor data message requires fields to represent the client id, the value the
sensor holds, what type the sensor is, and the timestamp of when the measurement is last taken.

RIThink, 2022, Vol. 11 32

This format is defined in the SensorData.proto schema:

message SensorData {
 required string id = 1;
 required double value = 2;
 required SensorType type = 3;
 required int64 timestamp = 4;

 enum SensorType {
 BOOLEAN = 0;
 NUMERIC = 1;
 }
}

This schema defines our message of sensor data to be transmitted. Each field in the message
definition has a unique number assigned to it to identify the fields in the message binary format.
Each field is marked with the keyword “required” as none of the data in our message can be omitted.
The SensorType enum within our schema defines the type of sensor that is sending data and can be
Boolean or Numeric.

MQTT Broker

An MQTT broker is the central hub of the functionality of MQTT. It is the intermediary that allows
communication between MQTT clients. As previously explained, the MQTT broker receives
messages that are published by the clients, creates selections of the messages depending on the
topic to which they are published, and then relays them to those subscribed to the mentioned
topic. Because of this communication model, MQTT is a highly efficient and scalable protocol.
Considering the issue of scalability often encountered in IoT systems, it is an ideal solution as
additional nodes of the broker can be configured at any point in time, including after initial
deployment, without downtime. This clearly depicts the advantage of both the MQTT protocol, as
well as the microservice architecture described in Figure 2.

Generally, two types of MQTT brokers are used:

1. Managed Brokers – this type does not require custom setup to enable MQTT
communication and is provided to the user as a service. The most known managed
broker service is AWS IoT Core.

2. Self-Hosted Brokers – this type requires custom installation of the broker, which
provides the clients with more flexibility, but also requires in-depth knowledge of the
system for management and scaling. Open-source implementations of self-hosted
brokers include Mosquitto and HiveMQ.

RIThink, 2022, Vol. 11 33

HiveMQ
Considering the goal of this work is to present a custom solution for scalable architecture, HiveMQ
is chosen to be implemented within the platform as a self-hosted broker. This broker makes data
transfer simple while also ensuring its efficiency, speed, and reliability.

HiveMQ had one of its most successful years yet in 2021 as the automotive industry embraced
MQTT and HiveMQ as the standard for connected cars. In 2022 it is expected that more than 50% of
cars produced globally will be connected with MQTT and HiveMQ (Götz, 2021).

HiveMQ key features:
Efficient: Transfers data to and from connected clients in an efficient, fast, and reliable manner.
Optimized: Designed to optimize the use of cloud resources by using MQTT to reduce the
bandwidth needed for data transfers.
Secure: Connects any device or system safely and reliably using the MQTT protocol.
Fast: Sends and receives data from clients quickly using the Publish/Subscribe push technology.
Scalable: Can scale up to 10 million connected devices with no data loss.
Open: Open API and pre-built extensions allow easy integration to other systems such as Kafka,
SQL, and NoSQL databases.

For the implementation within the provided solution architecture, a single HiveMQ node is
deployed from a Docker image.
Snippet from docker-compose.yml:

hive:
 image: "hivemq/hivemq4"
 ports:
 - 1883:1883

Once the data is published to the broker from the connected clients via MQTT, the broker is then
ready to serve the data to connected subscribers. According to the proposed architecture, at this
point, the data is sent to an Apache Kafka cluster.

Apache Kafka
Apache Kafka is an open-source distributed event streaming platform. It is used for high-
performance data streaming, analytics, and data integration.

RIThink, 2022, Vol. 11 34

Apache Kafka has gained great popularity in recent years and is used by many large and well-known
global companies including Goldman Sachs, Intuit, and Cisco.

The Kafka cluster is the component of Apache Kafka that stores data streams. Data streams are
sequences of messages that are produced by other applications to be stored within the cluster.
Once the data is stored, it can be sequentially consumed by other applications. The number of other
applications that can consume the data is virtually limitless, as separate consumer groups can be
created and the data received on specific topics can be dispatched to all mentioned groups (Sax,
2018).
In the proposed architecture, all data is stored on one topic, to further demonstrate the possibility
of multiple microservices consuming messages from the same topic. Once this is demonstrated, it
becomes clear that the number of microservices connecting to the Kafka cluster is also limitless, as
by adding Kafka nodes, the cluster can handle any number of additional clients connecting.

To achieve the data transfer between the MQTT broker and the Kafka cluster, an additional
component is created to map the messages served by the MQTT broker. Similar to HiveMQ, the
Kafka server is deployed using a docker image.
Snippet from docker-compose.yml:

kafka:
 image: confluentinc/cp-kafka:latest
 container_name: kafka
 ports:
 - "9092:9092"
 depends_on:
 - zookeeper
 environment:
 KAFKA_BROKER_ID: 1
 KAFKA_ZOOKEEPER_CONNECT: 'zookeeper:2181'
 KAFKA_LISTENER_SECURITY_PROTOCOL_MAP:
 PLAINTEXT:PLAINTEXT,PLAINTEXT_INTERNAL:PLAINTEXT
 KAFKA_ADVERTISED_LISTENERS:
 PLAINTEXT://localhost:9092,PLAINTEXT_INTERNAL://broker:29092
 KAFKA_OFFSETS_TOPIC_REPLICATION_FACTOR: 1
 KAFKA_TRANSACTION_STATE_LOG_MIN_ISR: 1
 KAFKA_TRANSACTION_STATE_LOG_REPLICATION_FACTOR: 1

HiveMQ-Kafka Mapper
This component is a custom developed application implemented as a Spring application and main
functionality consists of an MQTT Consumer and a Kafka Publisher.
The MQTT Consumer contains the code for creating an MQTTClient which connects to HiveMQ and
subscribes to a specific topic({clientId}/data).

MQTTConsumer.java core functionality code snippet:

RIThink, 2022, Vol. 11 35

//Code to create Mqtt Client to subscribe to topics

MqttConnectionOptions connOpts = new MqttConnectionOptions();

connOpts.setCleanStart(false);
client = new MqttAsyncClient("tcp://localhost:1883", "mqtt-client");
IMqttToken token = client.connect(connOpts);
token.waitForCompletion();

/*

* Code omitted for brevity

*/

MqttSubscription[] subscriptions = {new MqttSubscription("+/data")};
client.subscribe(subscriptions);

Upon message arrival to the subscriber, the message is further published using the Kafka Publisher.

//Method to publish payload to Kafka Producer
public void messageArrived(String s, MqttMessage mqttMessage) throws Exception {
 publisher.publish(KafkaPublisher.TOPIC,
 mqttMessage.getPayload()
);
}

KafkaPublisher.java core functionality code snippet:

TOPIC = "sensor-data";

producer = new KafkaProducer<>(props);

//Method to publish payload to Kafka topic
public void publish(String clientId, byte[] payload) {
 producer.send(new ProducerRecord<>(TOPIC, clientId, payload));
}

At this point, all data collected from the IoT-simulator (20 clients publishing data periodically), is
forwarded from the MQTT broker to the Kafka cluster to one shared topic “sensor-data” ready to
be consumed by all microservices that are connected as subscribers.

RIThink, 2022, Vol. 11 36

Microservices
A microservice can simply be described as an encapsulated component consisting of a single
application process. Within the proposed architecture, three different examples of microservices
are described and one is implemented into the IoT platform.

Data Trafficer
The first microservice provided in this custom architecture solution is the Data Trafficer. The Data
Trafficer is a microservice responsible for consuming data from the Kafka topic and storing the data
into a time-series database of our choice. For this project, InfluxDB is chosen.

Time Series Database – InfluxDB

InfluxDB is an open-source time-series database created for storing and retrieving time series data
often used for IoT sensor data and real-time analytics.
In addition to InfluxDB, Chronograf is used as the user interface and administrative component of
the InfluxDB platform.
Within the Data Trafficer, an InfluxDB client needs to be created to connect and communicate with
the database.

InfluxDBClient.java core functionality code snippet:

//Constructor to create influx database client

public InfluxDbClient() {
 InfluxDBClientOptions options = new InfluxDBClientOptions.Builder()
 .url("http://localhost:8086")
 .authenticate("influxdb", "influxdb".toCharArray())
 .build();
 influxDB = InfluxDBClientFactory.create(options);
}

//Method to write the measurement data to the database

public void writePoint(SensorData sensorData) throws InterruptedException {
 WriteApiBlocking writeApi = influxDB.getWriteApiBlocking();

 Point point = Point.measurement("sensor")
 .addTag("sensor_id", sensorData.getId())
 .addField("sensor_id", sensorData.getId())
 .addField("type", sensorData.getType().toString())
 .addField("value", sensorData.getValue())
 .addField("timestamp", sensorData.getTimestamp())
 .time(Instant.now(), WritePrecision.MS);

RIThink, 2022, Vol. 11 37

 writeApi.writePoint(point);
}

Data Trafficer Kafka Consumer

Finally, we create a Kafka Consumer which continuously attempts retrieving new data from the
queue, and then forwards the record consumed to the database.

DTKafkaConsumer.java core functionality code snippet:

//Create Kafka Consumer object

final KafkaConsumer consumer = new KafkaConsumer(props);

//Constantly try to poll messages from the Kafka topic
while (true) {
 final ConsumerRecords<String, byte[]> consumerRecords =

 consumer.poll(Duration.ofMillis(1000));

 //Write measurement data to database for each record consumed
 consumerRecords.forEach(record -> {
 SensorData data = SensorData.parseFrom(record.value());
 influxDbClient.writePoint(data);
 });
 consumer.commitAsync();
}

Chronograf

At this point, we query and visualize the data from the Influx database using the Chronograf user
interface. Figure 5 shows the Chronograf UI visualization of the data values received for two specific
accelerometers.

RIThink, 2022, Vol. 11 38

 Figure 5: Chronograf User Interface

Microservices: Possible Future Applications

Considering the microservice architecture, other applications can easily be developed and used
within the same IoT platform. Application implementations that are out of scope for this work,
include but are not limited to the following examples:

Live Data Service

Another example of a microservice that can be a useful business case in an IoT platform could be a
Live Data Service.

Just as the Data Trafficer implemented a consumer of the data on the Kafka topic to store the data
to the time series database, a Live Data Service microservice could also consume the data, but
rather than store it in a time-series database, directly push the data to subscribed users providing
the users with a live stream of the data on the sensors.

This could be used to implement a monitoring system, or any other use case in which the user may
want to immediately receive any change of value on a sensor.

Alert Engine

In addition to the previously mentioned microservices, an Alert Engine is another extremely useful
use case for a microservice within an IoT platform. This microservice can contain an application that
consumes the data and implement certain conditions under which an alert should be sent to users.
For example, we can define a rule within an Alert Engine that we want to be informed if the
temperature sensor on a car reads a value higher than 100 degrees Celsius, as well as an action we
want to do upon receiving this sort of measurement. For demonstration purposes, the image of the
proposed architecture sends the alert to another Kafka topic (for example “sensor-alerts”) which

RIThink, 2022, Vol. 11 39

any user subscribed can receive data from. In this case, maybe not only the driver of the car should
be informed of this, but also the producer of the car for further internal analysis.

API Gateway– GraphQL API

The API Gateway is here defined as the final component of the IoT platform.

An API gateway is a management tool for APIs that is placed between an end-user and a collection
of backend services, in this case, microservices. It is designed to accept all requests as API calls and
aggregate the microservices which are needed to return the appropriate result to the request.

In the custom solution provided, the GraphQL API is used as the API gateway and simply accepts a
remote request and returns a response. A Node.js application is created to serve this purpose. To
provide the functionalities to the user, queries are implemented in our application to define how
each request is handled by GraphQL. A Resolver class consisting of two types of actions is created
for this. First, an “analytics” function, which returns a response to the user containing the last N
values for a specific client /sensor.

//Code to define a query returning N number of measurements for some client

@Query(() => GraphQLJSON)
public analytics(
 @Arg("clientId") id: string,
 @Arg("limit", { defaultValue: 1 }) limit: number
): Promise<JSON> {
 return this.analyticsService.analytics(id, limit)
}

And second, a “statistics” function, which allows the user to obtain statistical values of the data of
a specific client/sensor. These statistics functions include: MEAN, COUNT, MIN, MAX, and SUM which
are all defined in the StatisticEnum and are dynamically forwarded to the query to return the chosen
statistic from the Influx database.

//Code to define a query returning the statistical value of measurements on a client

@Query(() => GraphQLJSON)
public statistics(
 @Arg("clientId") id: string,
 @Arg("statistic", () => StatisticEnum) statistic: StatisticEnum
): Promise<JSON> {
 return this.analyticsService.statistics(id, statistic)
}

RIThink, 2022, Vol. 11 40

As seen in the above code, an analyticsService object is used to serve the methods to the resolver.
In the AnalyticsService class, these methods are defined as functions that execute specific queries
towards the database to retrieve the data prompted by the user.

//Code to define the queries executed towards the database on user request

const analyticsResult = await this.influxClient.query(`SELECT "value","type" FROM "sensor" WHERE
"sensor_id"='${id}' ORDER BY time DESC LIMIT ${limit}`)

const statResult = await this.influxClient.query(`SELECT ${statistic}("value") FROM "sensor" WHERE
"sensor_id"='${id}' ORDER BY time DESC`)

GraphQL can then be used using its user interface Apollo Server which is also implemented for
additional functionality and simplicity of presentation. Results of queries are presented to the user
in JSON format with specific fields of interest for each query as defined in the application. The result
of an executed query that retrieves the last 3 measurements for a specific accelerometer is shown
in Figure 6.

Figure 6: GraphQL retrieve last 3 measurements on accelerometer

The result of an executed query that retrieves the mean value of the received input data for a specific
accelerometer is shown in Figure 7. As previously mentioned, the available statistics functions
include: MEAN, COUNT, MIN, MAX, and SUM which are retrieved the same way as in Figure 7 by
replacing the “statistic” field in the query.

RIThink, 2022, Vol. 11 41

 Figure 7: GraphQL retrieve the mean value for accelerometer

Custom microservice architecture for scalable IoT platform overview

Once the architecture proposed in Figure 3 is implemented, the final overview of the platform with
the technologies used is described in Figure 8.

Figure 8: Implemented IoT platform solution

RIThink, 2022, Vol. 11 42

Conclusion
To conclude, IoT is a continuously, extremely quickly growing domain of today’s technology and
adaptations and enhancements need to constantly be researched and attempted to build the best
functioning system possible for IoT platforms. These platforms are undeniably becoming a big part
of our lives handling immense amounts of our data daily.

Even though there is no unified architecture that is agreed upon to be the best for such platforms
and varies greatly depending on the requirements and possibilities of those building it, many agree
that the previously widely used monolithic architecture no longer serves the requirements of the
IoT environment. Because of its lack of modularity, scalability, and flexibility, it is being replaced
with the microservice architecture, which is more flexible, easier to maintain, and most importantly
limitlessly scalable.

This work presents a custom solution and technology stack organized as a microservice
architecture to implement a scalable IoT platform. To demonstrate this, the following is
implemented to achieve a competitive and optimized IoT platform:

- IoT-Simulator of a continuous stream of sensor data
The IoT Simulator provides an inbound rate of messages of >500 messages per second,
with the possibility of being modified to produce any amount of data making it an ideal
component for penetration testing of any IoT platform.

- Protocol Buffers format and MQTT protocol
MQTT and Protocol Buffers are used to increase communication speed between
components in the IoT platform. Protobuf performs up to 6 times faster than JSON. (Krebs,
2017). According to measurements in 3G networks, throughput of MQTT is 93 times faster
than HTTP’s (Serozhenko, 2017).

- HiveMQ as the MQTT broker
Considering HiveMQ recent success and expectations of 50% of globally produced cars
being connected using MQTT and HiveMQ by 2022, it is the most competitive and relevant
technology to use in such a platform architecture research paper.

- Apache Kafka cluster for data streaming and sequencing
Apache Kafka employs sequential disk I/O for enhanced performance for implementing
queues compared to other message brokers. For this reason, Kafka requires less hardware,
and is ideal for this paper, however depending on the environment in production, others
may perform better (Levy, 2018).

- A custom microservice for handling business case logic
Data Trafficer - microservice responsible for consuming data from Kafka and storing the
data into a time-series database. Time-series databases are optimized for time-stamped
or time series data and are the fastest growing database category.

- GraphQL as an API gateway presented to end-users using Apollo
GraphQL enhances user experience by making querying for wanted results easier to
formulate and read than those of the more standard Rest API.

RIThink, 2022, Vol. 11 43

References
Ankit. (2021, July 15). 5 Challenges of IOT Connectivity & Tips to Overcome Them.
https://huddle.eurostarsoftwaretesting.com/challenges-of-iot/

Banafa, A. (2017, March 14). Three Major Challenges Facing IoT. IEEE.
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot.html

Buyya, R., & Dastjerdi, A. V. (Eds.). (2016). Internet of Things : Principles and Paradigms. Elsevier
Science & Technology.

Collins, D. (2020, August 15). What is MQTT and when is it used in motion
 applications? Motion Control Tips. https://www.motioncontroltips.com/what-is-mqtt-and-
when-is-it-used-in-motion-applications/

Delaney, J. R., & Colon, A. (2022, March 10). The Best Smart Home Security Systems for 2022.
PCMag. https://www.pcmag.com/picks/the-best-smart-home-security-systems

Dix, P. (2021, July). Why Time Series Matters for Metrics, Real-Time Analytics and Sensor Data.
https://www.influxdata.com/time-series-database/

Gaur, C. (2020, April). Google Protocol Buffer - Serializing Structured Data. XENONSTACK.

Gillis, A. S. (2022, March). What is the internet of things (IoT)? Retrieved March 6, 2022, from
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT

Gnatyk, R. (2018). Microservices vs Monolith: Which architecture is the best choice for your
business? [Abstract]. N-ix, (October).

Götz, C. (2021, January 7). Trends to watch in 2021 for MQTT and HiveMQ.
https://www.hivemq.com/blog/trends-to-watch-in-2021-for-hivemq-and-mqtt/

Imran, M. A., Zoha, A., Zhang, L., & Abbasi, Q. H. (2020). Grand challenges in iot and sensor
networks. Frontiers in Communications and Networks, https://doi.org/10.3389/frcmn.2020.619452

Janson, C. (2021, July 22). Top 5 IoT Development Platforms in 2021.
https://www.iotforall.com/top-5-iot-development-platforms-in-2021

Kalyan, A. (n.d.). A Brief Understanding of the Role of MQTT Protocol in IoT. Beyond Root.
Retrieved February 19, 2022, from https://beyondroot.com/blog/a-brief-understanding-of-the-
role-of-mqtt-protocol-in-iot/

Krebs, B. (2017, January). Beating JSON performance with Protobuf.
https://auth0.com/blog/beating-json-performance-with-protobuf/

Lester, R. (2022, March). Scalability – What it means and why it's so critical to IoT. IT Pro Portal.
https://www.itproportal.com/features/scalability-what-it-means-and-why-its-so-critical-in-the-
iot/

Levy, E. (2019, May 7). Kafka vs. RabbitMQ: Architecture, Performance & Use Cases.
https://www.upsolver.com/blog/kafka-versus-rabbitmq-architecture-performance-use-case

Meghamala, P. (2019, July 16). How Business Processes Are Evolving With The IoT.
https://iot.electronicsforu.com/content/tech-trends/business-processes-evolving-iot/

https://huddle.eurostarsoftwaretesting.com/challenges-of-iot/
https://iot.ieee.org/newsletter/march-2017/three-major-challenges-facing-iot.html
https://www.motioncontroltips.com/what-is-mqtt-and-when-is-it-used-in-motion-applications/
https://www.motioncontroltips.com/what-is-mqtt-and-when-is-it-used-in-motion-applications/
https://www.pcmag.com/picks/the-best-smart-home-security-systems
https://www.influxdata.com/time-series-database/
https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://www.hivemq.com/blog/trends-to-watch-in-2021-for-hivemq-and-mqtt/
https://doi.org/10.3389/frcmn.2020.619452
https://www.iotforall.com/top-5-iot-development-platforms-in-2021
https://beyondroot.com/blog/a-brief-understanding-of-the-role-of-mqtt-protocol-in-iot/
https://beyondroot.com/blog/a-brief-understanding-of-the-role-of-mqtt-protocol-in-iot/
https://auth0.com/blog/beating-json-performance-with-protobuf/
https://www.itproportal.com/features/scalability-what-it-means-and-why-its-so-critical-in-the-iot/
https://www.itproportal.com/features/scalability-what-it-means-and-why-its-so-critical-in-the-iot/
https://www.upsolver.com/blog/kafka-versus-rabbitmq-architecture-performance-use-case
https://iot.electronicsforu.com/content/tech-trends/business-processes-evolving-iot/

RIThink, 2022, Vol. 11 44

MQTT: The Standard for IoT Messaging. (2022). Retrieved March 6, 2022, from https://mqtt.org/

Sax M.J. (2018) Apache Kafka. In: Sakr S., Zomaya A. (eds) Encyclopedia of Big Data Technologies.
Springer, Cham. https://doi.org/10.1007/978-3-319-63962-8_196-1

Serozhenko, M. (2017, March). MQTT vs. HTTP: which one is the best for IoT?
https://medium.com/mqtt-buddy/mqtt-vs-http-which-one-is-the-best-for-iotc868169b3105

The Complete MQTT Broker Selection Guide. (2020). Catchpoint.

https://mqtt.org/
https://doi.org/10.1007/978-3-319-63962-8_196-1
https://medium.com/mqtt-buddy/mqtt-vs-http-which-one-is-the-best-for-iotc868169b3105

	Introduction
	Brief Description of the Internet of Things
	Definition
	How it works
	Importance
	Challenges
	Security challenges
	Connectivity challenges
	Compatibility challenges
	Scalability challenges

	Existing IoT platforms
	Google Cloud IoT
	Cisco IoT Cloud Connect
	Cisco IoT Cloud Connect
	Salesforce IoT Cloud

	Custom architecture proposal for scalable IoT platform
	Architecture: Monolith vs Microservice
	Monolith Architecture
	Pros of Monolithic Architecture
	Cons of Monolithic Architecture

	Microservice Architecture
	Pros of Microservice Architecture
	Cons of Microservice Architecture

	Custom Microservice Architecture Solution Overview
	Sensors
	MQTT Protocol
	IoT-Simulator

	MQTT Broker
	An MQTT broker is the central hub of the functionality of MQTT. It is the intermediary that allows communication between MQTT clients. As previously explained, the MQTT broker receives messages that are published by the clients, creates selections of ...
	Generally, two types of MQTT brokers are used:
	HiveMQ
	Considering the goal of this work is to present a custom solution for scalable architecture, HiveMQ is chosen to be implemented within the platform as a self-hosted broker. This broker makes data transfer simple while also ensuring its efficiency, spe...
	HiveMQ had one of its most successful years yet in 2021 as the automotive industry embraced MQTT and HiveMQ as the standard for connected cars. In 2022 it is expected that more than 50% of cars produced globally will be connected with MQTT and HiveMQ ...

	Apache Kafka has gained great popularity in recent years and is used by many large and well-known global companies including Goldman Sachs, Intuit, and Cisco.
	The Kafka cluster is the component of Apache Kafka that stores data streams. Data streams are sequences of messages that are produced by other applications to be stored within the cluster. Once the data is stored, it can be sequentially consumed by ot...
	HiveMQ-Kafka Mapper
	Microservices
	Data Trafficer
	Time Series Database – InfluxDB
	Data Trafficer Kafka Consumer
	Chronograf

	Microservices: Possible Future Applications
	Live Data Service
	Another example of a microservice that can be a useful business case in an IoT platform could be a Live Data Service.
	Just as the Data Trafficer implemented a consumer of the data on the Kafka topic to store the data to the time series database, a Live Data Service microservice could also consume the data, but rather than store it in a time-series database, directly ...
	This could be used to implement a monitoring system, or any other use case in which the user may want to immediately receive any change of value on a sensor.
	Alert Engine

	API Gateway– GraphQL API
	Custom microservice architecture for scalable IoT platform overview

	Conclusion
	References

